
* 

A RIGOROUS APPROACH To SELF€"G PROGRAMMING 

Kien A.  H w  and Jacab A.  Abraham 

Computer Systems Group 
Coordinated Science Laboratory 

University of Illinois 
Urbana. IL 61801 

Phone: (217) 344-8087 

..* 
,....--"'- 

ABSTRACT 

has been shown to be an effective concurrent error detection 
-checking program however relies on the quality of its assertion 

written without formal guidelines could provide a 

has also been developed. that allows the 
designs to be done in a systematic manner. 

a constructive techni ue for self-checgi 
Design Language (S 9 DL) suitable for self- 

Keywords: Concurrent error detection, self-checking programming. program design, assertion 
statements. transformation. 

(bASA-CB-180657)  A B I G O E C U S  E E E 3 0 A C H  TO N87-265 17 
S BLP- CBEC KI IG E I C G f i  A1 B I  NG 
19 p A v a i l :  Y' I IS  BC 102/8F A01 CSCL 09B 

{ I 11 in cis U niv . ) 
Unclas 

G3/61 00648GS 

Acknowledgment: This research was supported in part by a contract from IBM Corporation 
and in part by the National Aeronautics and Space Administration (NASA) under contract NASA 
NAG 1602. 



. 
7 1 

1. INTRODUCTION 

off-line circuit testing is one of the widely used techniques to detect physical failures and to 

ensure that a system is defect-free. Unfortunately. the decrease in geometries has increased the 

possibility of transient errors in computing systems that are based on VLSI technology. Since these 

errors are usually nonrecurring and not reproducible, off-line testing (useful for permanent faults) 

will not reliably detect transients. Current trend is to include Concurr- Error Detection (CED) 
capability into the design of digital systems in order to detect errors concurrently during their 

normal operations. 

Traditionally, systems with CED are implemented using self-checking circuits [l] and/or 

hardware duplication [21. Since these techniques require hardware redundancy. they are usually 

very expensive. Recently, a new approach that utilizes a combination of hardware and software 

redundancy to accomplish concurrent error detection has been proposed [3. 41. These techniques 

assume that malfunctions such as processor failures, bus faults will cause errors in the control flow 

of the program. These techniques partition the assembly language level instructions of the 

application program into branch-less blocks. At compile time. cyclic codes or signatures are 

generated for the instruction stream of each block. During the execution time, the same cyclic 

coded signatures are regenerated by a linear feedback shift register. Error detection is performed 

by comparing the run-time generated signatures with the ones precomputed by the compiler. These 

schemes are inexpensive and provide excellent control flow monitoring capability. Unfortunately, 

they do not perform well in case of errors due to data type faults [JI. 

Until automatic program verikation becomes a reality. the reliability of today software 

systems mainly rely on software testing. Software testing however has been criticized as being 

inadequate for it usually does not reveal all the software bugs. "program testing can be used to 

show the presence of bugs, but never to show their absence I" is a now-famous statement 161. For 
safety-critial applications, concurrent error detection of errors due to software bugs is therefore as 

important as the detection of errors due to physical failures in the hardware. The CED techniques 

we have discussed so far do not detect errors due to software faults. Since a computing system is 

made up of software components and hardware components. a CED technique that can detect errors 

due to either hardware failures or programming bugs in the software would be very desirable. 



2 

I 

An important characteristic of CED techniques is the level at which the checking mechanism 

is placed. Gatelevel techniques such as those using error detecting coding 111 usually assume the 

single or double stuck-at fault model. As the geometric features of integrated circuits become 

smaller, physical defects can affect a local area of a circuit. and duck-at fault models are therefore 

not satisfactory. Functional-level techniques such as those used in algorithm-based fault tolerance 

[7.8.91 assume a more general model which allows any single module in the system to be faulty. 

These techniques hence can detect errors due to a block of faulty logic that is local to any single 

module. 

READ B; V 
As- If + c ** 2; ..- 

a 
I I  

f 7  

~ ~~ 

Figure 1 Three categories of concurrent error detection 



3 

In this paper we present a 0 technique that places the checking mechanism a t  the 

application program level (Figure 1). This technique achieves error detection by introducing 

software redundancy in the form of executable assertions into the program to check the correct 

operation of the system during its execution. Both software and hardware faults that affect the 

dynamic behavior of the program therefore can be detected. Such computer programs that check 

their own dynamic behavior automatically during their execution are called self-checking 

programs, and we call the technique Self-checking Rogramming ( S O ) ;  A more rigorous definition 

for self-checking program will be given in Section 3. 

In recent years, several publications have proposed techniques for SCP [lo. 11. 12, 13, 141. 

In a previous paper 1141 we also described a methodology for the experimental evaluation of the 

error coverage of self-checking programs. We also conducted experiments [14. 151 to study the 

effectiveness of SCP. The results showed that it can provide excellent coverage against both 
h&-&&.-dt &?d &v&.=ie fz.Gl*&* 

In this paper we will present a constructive technique for SCP. A set of transformation rules 

that serves as mental aids in designing self-checking software will be given. The proposed method 

constructively extracts the assertions from the text of the program design. The correctness of the 

design is also verilicd based on the assertions, so that if all these assertions are TRUE when they are 

checked during run time. then the output computed must be correct with respect to the output 

specification. 

The remainder of this paper is organized as follows: In Section 2, we define a stnrduted 

Rogram Design h g u u g e  (SPDL) suitable for the design of self-checking software. The proposed 

technique for self-checking software design is presented in Section 3. In Section 4 the technique is 

extended to handle procedure and function calls. Finally, an overview of the SCP methodology is 

discussed in Section 5. 



4 

2. SPDL - A DESIGN LANGUAGE FOR SI'RUCIWRED PROGRAMS 

The properties of being intuitive and being rigorous often seem in c o a c t .  A program design 

language that is too rigorous is usually too tedious to use, and it is error-prone. The algorithms it 

express a h  tends to be long and unintuitive. Its correctness is therefore more diflicult to prove. 

Since the purpose of a design is to communicate the designer's idea to programmers, a good program 

design language should be readable. Yet it must be rigorous enough so t&at its correctness can be 

formally verified. Besides. a good program design language should also be able to present idea in 

varying degrees of detail, and the design structure must allow easy transformation of the program 

design into program code. 

The SPDL we describe in this section is a language for the design of structured programs [161. 

Its syntax is derived from Pascal. A SPDL assignment statement is an English statement that may 

contain mathematical and logical notations. For instance. the followins statement is a SPDL 

assignment statement that computes the solution of a quadratic equation, and assigns the solutions 

to the variables X1 and X2: 

(Xl, X2) + Compute X such that AXZ+BX+C = 0; 

An advantage of using 'pidgin' English statements is being able to express idea in varying degrees 

of details. Depending on the problem a t  hand. the algorithms can be expressed at whatever level of 

detail is appropriate to avoid ambiguity. For instance. the above SPDL statement can be rewritten 

in more details as follows: 

X1+ ( - B + m ) / ( 2 A )  

2U + ( - B - m ) / ( 2 A )  

the above two assignment statements provide two additional information: the formulas to compute 

the solutions, and the assignment of the solutions to the appropriate variables. 

A program design written in SPDL has its statements embedded in the so called structured 

controls: ALTERNATIVE, ITERATIVE and SEQUENTIAL. IF..T"..ELSE, WHILE..DO and 

SEQUENTIAL have been proposed as the building blocks for good programming 1171. Our 

experience has shown that IF.." and CASE (as in Pascal) are frequently useful in program 

design. We thus include all these five features in SPDL. If the reader accepts 'other statements' as 

indicating, say, assignment statements and procedure calls, we can give the BNF 1181 syntax 



5 

description for the SPDL control constructs. In the following we have extended BM; with the 

convention that (...)+ denotes "one or more instances of the enclosed." 

<statement list> ::= (<statement> I+ 
<statement > ::= <alternative > I < iterative> I <other statements > 
<alternative>::- <ifthen> I <ifthenelse> I <case> 

<ifthen>::= if <boolean expression> then <statement list> $; 

< ifthenelse > ::- if <boolean expression > 
then <statementlist> 

else <statement list> $: 

<case>::-case <expression> of 

(<constant>: <statement list>>+ 

endcase; 

/it---+is*-\ *-_ u.h.'lm /L--l--- -----d-- 1 >- I W I W A  C A p L ~ l U l l /  U V  - * - Y . & V C I  ..- w a r n  

<statement list > 
enddo; 

SPDL also supports hierarchical designs. The syntax for the procedure and function calls is the 

same as that of Pascal. So is the syntax for the declaration statements. 

While the use of pidgin languages is also advocated by others. we have taken the additional 

steps of imposing a degree of formalism on the language so that the correctness of a design written 

in SPDL can be formally verified. This will be discussed in Section 3. The use of the structured 

controls also makes the transformation of a SPDL design into code in many structured 

programming languages (e.g.. Pascal. PYI,  Fortran) a straightforward process. 

3 DESIGN OF SELF-CHECKING SOFLWARE 

In this section we assume that the design of a program has been successfully written in 

SPDL. We will present a constructive technique that transforms SPDL designs into self-checking 

designs. 



6 

&$nition I: An asserted program is mid to be self-checking with respect to its output specification 

if any time it is run on some input data and all the assertions arc TRUE when they are checked, 

then the output computed must be correct with respect to the output specification. 

De$nition 2: A program design is said to be self-checking if the program code derived from it is a 

self-checking program. 

&$nition 3: Let SL be a SPDL statement list. ASSERT(SL) denotes ,the assertion statements 

(knowledge) of what must be true after the "execution" of the SL. 

Note that if p is a boolean expression. then ASSERT(p)-p. 

Dejnifim 4: Let SL be a SPDL statement list. SCP(SL) denotes the self-checking version of the SL. 

In this paper we assume that the input data always satisties the input specification of a 

program. otherwise the input specification could be used to check this property. 

Thearem I: Let P be a program (design). If ASSERT(P) implies the output specification. q(P), then 

the composition of P and Y(P) is a self-checking program (design). In notation form, we have: 

where the semicolon (;) denotes procedural composition. 

A-oof: The property (ASSERT(P) Q(P)) guarantees that if the computed outputs satisfy 

ASSERT(P) (i.e.. all the assertions in AssERT(P) return TRUE). then they must also satisfy Yu(P). 

The computed outputs therefore must be correct with respect to the output specification of the 

program. From Definition 1, we thus have !3CP(P)-(P : ASERfiP)). 

0 

&$nition 5: Let A and A be assertion statements. A e A, denotes the new assertion statements 

that express the combined knowledge of what must be true derivable from A and A 2' 

Note that since the alternation of the order of the program statements may not preserve the 

semantics of the program. the operation is not commutative. For instance, suppose we have the 



7 

following assertions: 

where Xo denotes the previou 

A, (X=a) 

A, E (X=X0+2) 

A, E (Y=X+2) 

valu- -f the variable X. We then hav 

A * A, A, 3 (X=a+2 A Y=a+4) 

Al*A3*A2E(X=Y-a+2) 

. .  

An assertion statement should have the form "if  not ASSERTION then ERROR". However we will 

use the ASSERTION to denote the assertion statement whenever thii is clear from the surrounding 

context to do so. 

IT nrde t," & t," *z-&rm = SpDL d&*g* L?*& 6 s?f*b&Lqj d&5p, -+-e iid 8 Et of 

transformation rules that transform SPDL control constructs into their self-checking versions. In 

the following we will use the symbols p to denote a boolean expression, k to denote an expression, 

SLi to denote statement list i and cui to denote constant i. 

(1) Rule of Composition (Sequent&& 

ASSERT(SL1 SL2) = ASSERT(SL1) ASERT(SL2) 

scp(SL1 SL2) = (SL1 SL2 ASSERT(SL1 SL2)) 

(2) Rule of Alternation: 

(a) Rule of ifthen: 

ASSERlXif  p thm SL #;) - (p A AssERT(SL)) V -p 

scp(<ifthen>) = (<ifthen> ASERT(<ifthen>)) 

 ASSERT(^^ p then SLI h e  su IS;) 
(b) Rule of iftheneb: 

= (p A ASSERT(SL1)) V (-p A ASSERT(SL2)) 

SCP(<ifthenelse>) = (<ifthenelse> ASSERT(<ifthenelse>)) 

(c) Rule of Csse: 
ASSERT(arrre k o f  al: SL1 ... a,, : SLn endcase;) 

= ((k-al) A ASSERT(SL1)) V ... V ((kq A ASSERfiSLn)) 

scP(<case>) - (<case> AssERT(<case>)) 



(3) Rule of Iteration: 

SCP(whib p do SL enddo;) 

= (whib p do ASERfip) SL ASsERfiSL) enddo; ASsERT(1p)) 

The assertions as described in Theorem 1 are called global assertions. In some cases, it is 

more convenient and more &cient to partition a program (or procedure) into segments, and local 

assertions am inserted at the end of each segment to make them self-checking. 

Theorem 2: Let P be a program (design) with embedded local assertions such that each segment is 

self-checking. If the set of local assertions implies the output specification, Y(P). of the program 

(design). then P is self-checking with respect to the output specification. In notation form, we 

have: 

where SLi denotes i-th segment of the program (design) P. 

Apply the Rule of Compositmn. P can be written as: 

P: sL1 SL2 ... SLn (ASSFRfiSLl) ASSERfiSL2) ... ASSERT(SLn)) 

Sin= (ASSERT(SL1) ... ASSERT(SLn))+*(P), based on Theorem 1 we can conclude that P' is a 

self-checking program (design). P is however semantically equivalent to P. hence P is also a self- 

checking program (design). 

0 

The Rule of Iteration is based on Theorem 2. A WHILE..DO statement can be considered as a 

sequence of IF..THEN statements: 

(while p do SL enddo;) E ( if p then SLP; 

while p do SL enddo; ) 

E ( i f  p then SLP; 



9 

According to Theorem 2. we can break this statement list into individual IF..THEN statements and 

insert assertions for each of them. Since ASSERT(SL) is the same for each of the IF..THEN 

statements. the same ASSERT(SL) can be used to check the correct behavior of each iteration of the 

WHILE..DO statement. Since we may not know the exact number of iterations, induction might be 

required to prove the correctness of a design that contains iterative statements. 

Example I: This example illustrates the application of the transformation rules. The following 

procedure. MATRMINV. computes the inverse of the nXn matrix M. which is returned as MI. 

pracedure M A " V ( n :  integer; (* dimension of M *> 
M m u y  [1..10.1..10] of red; (* matrix to invert *I 
w l v u .  w a y  L~..lv.l..iuj of red; (* inveried matrix *j rd d n d  4-1 

V W  

i: integer; (* loop index *) 
B.X: array [1..10] of real; 

begin 

1 i+l; 

while i<n do 

2 

3 

4 icincrement i: 

Bci-th column of the identity matrix, @-th column]; 

h.IIci-th colusnn]tcompute X such that MX-B 

enddo 

end; (*MA-*) 

The assignment statements in the procedure MATRMINV have been numked.  In the 

following discussion, we will refer to the statements by their numbers. Also. io denotes the 

previous value of the variable i. 

scp(MATRMINv) = SCP(1 w e  i<n do 2 3 4 enddo;) 

Apply Theorem 2. we have: 

scp(MATRIXINV) - ( SCP(1) SCP(whde i<n do 2 3 4 enddo;) ) (1) 



10 

Apply Theorem 1, we have: 

scP(1) - ( 1 AssERT(1) 1 - ( 1 i f  i f 1  then ERROR: ) (2) 

Apply the Rule of Iteration, we have: 

SCP(whi& i d n  do 2 3 4 enddo;) - ( while i d n  do 

ASSERT(i d n) 
2 3 4  

ASSERT(2 3 4) 

enddo 

ASSERT(i>n) (3) 

ASSERT(2 3 4) - ASSERT(2) ASSERT(3) ASSERT(4) - (Edi-th column]) (M-mi-th columnl-B) (i-io+l) - (M-h.ll[i-th column]-I[i-th column]) (i=io+l) - (Msmi-th columnkdi-th column]) A (i-io+l) 

We thus have: 

SCP(while i d  n do 2 3 4 enddo;) - ( while i d n  do 

i f  i>n then ERROR 
i + i: (* save previous value *) 

2 3 4  

if (M-mi-th column] # ai-th columnl) then ERROR; 
i f  (i#io+l) then ERROR: 

0 

enddo 

i f  (i d n) then ERROR: (4) 

Substitute (2) and (4) into (11, we have: 

scP(MATRMINv)-(i+ 1; 

if i#l then ERROR: 



11 

whilc i b n  do 

ifi>n then ERROR 

io + i; (* save previous value *I 
B+ I[i-th c ~ l ~ m n ] :  

m i - t h  column] + compute X such that MX-B: 

i + increment i; 

if (M-mi-th column] # ai-th column]) then ERROR: 

if <i#io+l) then ERROR: 

enddo 

if (ign) then ERROR: 

However, the assertion ASSERT(1) easurcs that i was initialized to '1' before entering the loop. 

We therefore have: 

V i  l<i<n. M-Mdi-th columnbdi-th column] 

which is the output specification of the procedure MATRIXINV. From Theorem 2, we hence can 

conclude that the s c p ( M A " V )  is self-checking with respect to the output specification. By 

doing the above reasoning, we have also proved the correctness of the design. We have not 

discussed the termination problems. A technique based on the well-found set properties described 

in [141 can be used to detect this class of errors. or we may design a computing system that 

includes a time-out mechani i  for the detection of Wte loops [131. 

The transformation process described in Example 1 may seem to involve many steps. 

Actually many of them w m  shown for the purpose of illustration. In practice, the obvious steps 

could have ban skipped. and the process would have appeared much shorter. 



12 

4. HANDLEPROCEDURECALLS 

A SPDL design may involve procedure and function calls. In order to show the generality of 

the transformation technique, it is extended to handle procedure and function calls. There are two 

approaches to these statements: 

(1) We can consider a procedure or a function as a separate program and apply the 

transformation rules to transform it into a self-checking design 'with respect to its own 

specification. The output specification of the called procedure or function then can be used as 

a lemma in the proof of self-checking for the calling procedure. If we consider the called 

procedure as a segment of the calling procedure, then Theorem 2 states that the calling 

(2) Viewing a procedure call as an instance of the called procedure. we can consider the called 

procedure as if it is part of the calling procedure. The self-checking transformation then can 

be carried out. according to the following rules, otherwise normally: 

(a) At the beginning of the called procedure, we add assignment statements to assign the 

values of the actual parameters to the corresponding formal parameters. 

(b) At the end of the called procedure, we add assignment statements to assign the values 

of those formal parameters that are 'called by reference' to the corresponding actual 

parameters. 

(c) Replace the procedure call statement by the new body of the called procedure. 

For function calls. the rules are similar. They are given belows: 

(a) At the beginning of the called function, we add assignment statements to assign the 

values of the actual parameters to the corresponding formal parameters. 

(b) Add before the statement that involves the function call the new body of the called 

function. 

(c) Replace the function call by the function name (i.e.. the function name is considered as 

8 variable). 



13 

The above rules describe merely a mental process. No actual modification to the original 

design should be done. 

Exrunplc 2 This example illustrates these! two approaches. The procedure MATRIXlNV shown in 

Example 1 can be rewritten to include a procedure call to procedure SOLVE that computes the 

solution of a linear system MX-B. The solution is returned in the matrix X. 

procedure MATRMINV(n: integer: (* dimension of M *> 
M: urruy [1..10.1..10] of r d ;  (* matrix to invert *) 

vur MI: m r ~ y  [1..10,1..10] of r e d :  (* inverted matrix *> 
VUT 

i: integer: (* loop index *> 
BX: urruy [1..10] of rad: 

begin 

i+- 1: 

while i<n do 

B+i-th column of the identity matrix, ai-th column]; 

call SOLVE(MXJ3): 

mi-th column]+ X; 
icincremcnt i: 

enddo 

end: (*MATRIxINv*) 

If the first 8pproach is used, then the s c P ( M A m >  is as follows: 

procedure MATRMINv(n: integer; (* dimension of M *> 
M: awuy [1..10.1..10] of r d :  (* matrix to invert *) 

YYLT MI: urruy [1..10,1..10] o f r d ;  (* inverted matrix *> 
V W  

i: integer: (* loop index *) 

B,X: urruy [1..10] of red: 

begin 

i c l :  

if (iZ1) then ERROR: 
while ibn do 



14 

if i>n  then ERROR; 

i + i; (* save previous value *I 
0 

Bci-th column of the identity matrix. ai-th co1umn1; 

call SOLWXMXB); 

N i - t h  column]+ X; 
i+increment i; 

i f  (mi - th  columnlfx) then ERROR; 
if (i#io+l) then ERROR; 

enddo 

end; (* MATRDUNV 8) 

. .  . 

Note that the self-checking properties of the procedure SOLVE is assumed by the calling procedure. 

M A " V  assumes that the solution returned in X has been checked to be correct by SOLVE, 
rind it ~ n l y  &w.ks tr, mrtr  m ~ =  i b t  ?r_ & tc +&e zpprc@~+k -&>my of *he m w h  ?.E. 
the second approach was used. the assertion statements for the SCP(MA"V) would have 

been the same as those shown in Example 1. Consider the procedure SOLVE as having only one 

statement: 

X + compute X such that MX=B; 

It is then obvious why the second approach would have yield the Same assertion statements as 

those derived in Example 1. 

5. SELF€"GPROGRAMMING 

The traditional software development life cycle is as shown in Figure 2.a. Figure 2.b depicts 

the life cycle of the proposed SCP technique. In Figure 2.b. an additional stage is added to perform 

the self-checking transformation. A set of rules that guides the transformation process: has been 

described in Section 3. Once the self-checking design is available, the next step is to translate it into 

code in the target language. Even though this translation process may introduce coding faults, the 

mors will be detected during run time because the design has already been proved to be correct 

and the asration were extracted from the design text. not the program code. In other words. the 



f- l VALIDATION 

(A) 

Self-checking Design + 
Figure 2. Traditional software development process (a) 
versus self-checking software development ptocess (b). 

assertions. derived in this manner, check whether the run time computation correctly computes the 

intended semantics e e d  by the program design. Any discrepancy caused by coding faults 

therefore will k detected. 

The self-checking transformation process also proves the correctness of the design. As the 

software systems becoming more complex, it is advantageous to do as much validation as early as 

possible in the life cycle. Fixing a bug in the program design is obviously much less: expensive then 

having to fix it in the program code. The necessity of proving the correctness of the program 



16 

designs has become increasingly apparent. 

If we consider the validation of the program design as a mandatory step in software 

development, then the only time overhead to make a program self-checking is the minimal time 

required to translate the assertion statements into code in the target language. This drawback 

however is offset by the fact that the assertion statements can detect and help the programmer to 

locate coding bugs. The debugging time therefore can be hproved. 

The CED technique we have described depmds for its reliability improvement on the 

assumption that errors occur during the execution of the assertion statements will not mask out the 

errors in the normal computation. This is a reasonable assumption. An assertion statement usually 

has the following form: 

if expression1 Z expression2 then ERROR 

It is unlikely that errors occurred during the computation of expressionl and/or expression2. yet 

their results arc accidentally equal. Our experimental results [14, 151 confirmed the validity of 

this assumption. 

6. CONCLUSIONS 

Self-checking programming has been shown to be an effective concurrent error detection 

technique 114, 151. Its most distinguishing feature is the ability to detect all three classes of 

computing errors: errors due to hardware faults, transient faults or software faults. The 

reliability of a self-checking program however relies on the quality of its assertion statements. A 

self-checking program written without formal guidelines could provide a poor coverage of the 

errors. 

This paper presents a constructive technique for self-checking programming. We have 

defined a structured program design language that is suitable for self-checking software 

development. A set of formal rules, has also been proposed. that makes the transformation of 

SPDL designs into self-checking designs a systematic process. 



17 

A disadvantage of self-checking programming is the extra time required to execute the 

assertion statements. A 1OOO-line self-checking Pascal program was implemented for an 

experimental study [15]. We found the performance overhead for this program to be 9.8%. If this 

is a typical figure. then it is negligible for most applications. Multiprocessor systems can also be 

used to improve the performance of self-checking programs. This subject is discussed in 1141. 

' I  



18 

REFERENCES 

J. Wakcrly. Emor Detecting Codes, &df<hecking Circuits and Applicatic#u, New York: 

D. Johnson. "The Intel 432: A VLSI Architecture for Fault-Tolerant Computer Systems," IEEE 
Canputer, pp. 40-48. August 1984. 
T. Sridhar and S. M. Thatte. "Concurrent Checking of Program Flow in VLSI Processors.' 
Roc. Int'l Test G m f . ,  pp. 191-199.1982. 
J. P. S e n  and M. A. Schuette. "%-Line Self-Monitoring Using Signatured Instruction 
Streams," Roc. Int'l Test Gmf., pp. 275-282.1983. 
M. E. Schuette. J. P. Shen, D. P. Siewiorek and Y. X. Zhu. "Experimental Evaluation of Two 
Concurrent Error Detection Schemes." Roc. 16th m S ,  pp. 138-143, June 1986. 
E. W. Dijkstra. "Notes on Structured Programming." in 0. J. Dahl, E. W. Dijkstra and C. A. R. 
Hoare. struchaed R o g r d n g ,  New York: Academic Press. pp 1-82,1972. 
K-H Huang and J. A. Abraham, "Algorithm-Based Fault Tolerance for Matrix Operations." 
IEEE Trans. on Comput., vol. G33. pp. 518528, June 1984. 
J-Y Jou and J. A. Abraham. "Fault-Tolerant Matrix Arithmetic and Signal Processing on 
Highly Concurrent Computing Structures,' R o e d i n g s  of the IEEE Speciul Issue on Fault 
Tolerance in VLSI, vol. 74. no. 5, pp. 732-741. May 1986. 
P. Banerjee and J. A. Abraham. "Fault-Secure Algorithms for MultipltProcessor Systems." 
Roc. IEEE Int'l Symp. on Ctnnputer Architectute, pp. 279-287. June 1984. 

North-Holland. 1978 

[lo] S. S. Yau and R. C. Cheung, h i g n  of Self-checking Software," Roc. Int'l G m f .  on Reliubitity 
softwme, pp. 405-457. April 1975. 

[ll] D. M. Andrews. "Using Executable Assertions for Testing and Fault Tolerance." Roc. 9th I d 2  
Symp. on Fa& Tolerant copnputing, pp. 102-105. June 1979. 

[12] A. Mahmd.  E. J. McCluskey and D. J. Lu, "Concurrent Fault Detection Using A Watchdog 
Processor and Assertions," Roc. Int'l Test G m f . ,  pp. 622628.1983. 

[13] A. Milli, Self-checking Programs: An Axiomatic Approach to The Validation of Programs by 
The Use of Assertions, PH. D. dissertation. Dept. Comp. Sci.. University of Illinois, Urbana, 
1981. 

[14] K. A. Hua and J. A. Abraham, ?Design of Systems with Concurrent Error Detection Using 
Software Redundancy." Roc. FJCX '86, pp. 826-835, Nov. 1986. 

[15] K. A. Hua and J. A. Abraham, %xperimcntal Evaluation of Self-checking Programming," 
submitted to the 17th FTCS, June 1987. 

[16] D. J. Dahl. E. W. Dijkstra and C. A. R. Hoare, strudured Progrumming, New York: Academic 
Press. Inc.. 1972. 

1173 E. W. Dij-a. "Go To Statement Considered Harmful." Comm. ACM, vol. 11. pp. 147-148. 
Mar. 1968. 

[181 Naur. Peter (Ed.). "Report on The Algorithmic Language ALGOL 60." Comm. ACM, vol. 3. pp. 
299-314. May 1960. 

t 


